Airflow operators for reading and writing XLSX files
Apache Airflow operators for converting XLSX files from/to Parquet, CSV and JSON.
$ pip install airflow-provider-xlsx
Read an XLSX or XLS file and convert it into Parquet, CSV, JSON, JSON Lines(one line per record) file.
XLSX Source
Airflow Task
from xlsx_provider.operators.from_xlsx_operator import FromXLSXOperator
xlsx_to_jsonl = FromXLSXOperator(
task_id='xlsx_to_jsonl',
source='{{ var.value.tmp_path }}/test.xlsx',
target='{{ var.value.tmp_path }}/test.jsonl',
file_format='jsonl',
dag=dag
)
JSON Lines Output
{"month": "Jan", "high": -12.2, "mean": -16.2, "low": -20.1, "precipitation": 19}
{"month": "Feb", "high": -10.3, "mean": -14.7, "low": -19.1, "precipitation": 14}
{"month": "Mar", "high": -2.6, "mean": -7.2, "low": -11.8, "precipitation": 15}
{"month": "Apr", "high": 8.1, "mean": 3.2, "low": -1.7, "precipitation": 24}
{"month": "May", "high": 17.5, "mean": 11.6, "low": 5.6, "precipitation": 36}
{"month": "Jun", "high": 24, "mean": 18.2, "low": 12.3, "precipitation": 58}
{"month": "Jul", "high": 25.7, "mean": 20.2, "low": 14.7, "precipitation": 72}
{"month": "Aug", "high": 22.2, "mean": 17, "low": 11.7, "precipitation": 66}
{"month": "Sep", "high": 16.6, "mean": 11.5, "low": 6.4, "precipitation": 44}
{"month": "Oct", "high": 6.8, "mean": 3.4, "low": 0, "precipitation": 38}
Execute an SQL query an XLSX/XLS file and export the result into a Parquet or CSV file
This operators loads an XLSX or XLS file into an in-memory SQLite database, executes a query on the db and stores the result into a Parquet, CSV, JSON, JSON Lines(one line per record) file. The output columns names and types are determinated by the SQL query output.
XLSX Source
SQL Query
select
g as high_tech_sector,
h as eur_bilion,
i as share
from
high_tech
where
_index > 1
and high_tech_sector <> ''
and lower(high_tech_sector) <> 'total'
Airflow Task
from xlsx_provider.operators.from_xlsx_query_operator import FromXLSXQueryOperator
xlsx_to_csv = FromXLSXQueryOperator(
task_id='xlsx_to_csv',
source='{{ var.value.tmp_path }}/high_tech.xlsx',
target='{{ var.value.tmp_path }}/high_tech.parquet',
file_format='csv',
csv_delimiter=',',
table_name='high_tech',
worksheet='Figure 3',
query='''
select
g as high_tech_sector,
h as eur_bilion,
i as share
from
high_tech
where
_index > 1
and high_tech_sector <> ''
and lower(high_tech_sector) <> 'total'
''',
dag = dag
)
Output
high_tech_sector,value,share
Pharmacy,78280,0.231952169555313
Electronics-telecommunications,75243,0.222954583130376
Scientific instruments,64010,0.189670433253542
Aerospace,44472,0.131776952366115
Computers office machines,21772,0.0645136852766778
Non-electrical machinery,20813,0.0616714981835167
Chemistry,19776,0.058598734453222
Electrical machinery,9730,0.028831912195612
Armament,3384,0.0100300315856265
Read a Parquest, CSV, JSON, JSON Lines(one line per record) file and convert it into XLSX.
from xlsx_provider.operators.to_xlsx_operator import ToXLSXOperator
parquet_to_xlsx = ToXLSXOperator(
task_id='parquet_to_xlsx',
source='{{ var.value.tmp_path }}/test.parquet',
target='{{ var.value.tmp_path }}/test.xlsx',
dag=dag
)