Python bindings for the Transformer models implemented in C/C++ using GGML library.
Python bindings for the Transformer models implemented in C/C++ using GGML library.
Also see ChatDocs
Models | Model Type | CUDA | Metal |
---|---|---|---|
GPT-2 | gpt2 |
||
GPT-J, GPT4All-J | gptj |
||
GPT-NeoX, StableLM | gpt_neox |
||
Falcon | falcon |
✅ | |
LLaMA, LLaMA 2 | llama |
✅ | ✅ |
MPT | mpt |
✅ | |
StarCoder, StarChat | gpt_bigcode |
✅ | |
Dolly V2 | dolly-v2 |
||
Replit | replit |
pip install ctransformers
It provides a unified interface for all models:
from ctransformers import AutoModelForCausalLM
llm = AutoModelForCausalLM.from_pretrained("/path/to/ggml-model.bin", model_type="gpt2")
print(llm("AI is going to"))
To stream the output, set stream=True
:
for text in llm("AI is going to", stream=True):
print(text, end="", flush=True)
You can load models from Hugging Face Hub directly:
llm = AutoModelForCausalLM.from_pretrained("marella/gpt-2-ggml")
If a model repo has multiple model files (.bin
or .gguf
files), specify a model file using:
llm = AutoModelForCausalLM.from_pretrained("marella/gpt-2-ggml", model_file="ggml-model.bin")
Note: This is an experimental feature and may change in the future.
To use it with 🤗 Transformers, create model and tokenizer using:
from ctransformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("marella/gpt-2-ggml", hf=True)
tokenizer = AutoTokenizer.from_pretrained(model)
You can use 🤗 Transformers text generation pipeline:
from transformers import pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
print(pipe("AI is going to", max_new_tokens=256))
You can use 🤗 Transformers generation parameters:
pipe("AI is going to", max_new_tokens=256, do_sample=True, temperature=0.8, repetition_penalty=1.1)
You can use 🤗 Transformers tokenizers:
from ctransformers import AutoModelForCausalLM
from transformers import AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("marella/gpt-2-ggml", hf=True) # Load model from GGML model repo.
tokenizer = AutoTokenizer.from_pretrained("gpt2") # Load tokenizer from original model repo.
It is integrated into LangChain. See LangChain docs.
To run some of the model layers on GPU, set the gpu_layers
parameter:
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-GGML", gpu_layers=50)
Install CUDA libraries using:
pip install ctransformers[cuda]
To enable ROCm support, install the ctransformers
package using:
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
To enable Metal support, install the ctransformers
package using:
CT_METAL=1 pip install ctransformers --no-binary ctransformers
Note: This is an experimental feature and only LLaMA models are supported using ExLlama.
Install additional dependencies using:
pip install ctransformers[gptq]
Load a GPTQ model using:
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-GPTQ")
If model name or path doesn't contain the word
gptq
then specifymodel_type="gptq"
.
It can also be used with LangChain. Low-level APIs are not fully supported.
Parameter | Type | Description | Default |
---|---|---|---|
top_k |
int |
The top-k value to use for sampling. | 40 |
top_p |
float |
The top-p value to use for sampling. | 0.95 |
temperature |
float |
The temperature to use for sampling. | 0.8 |
repetition_penalty |
float |
The repetition penalty to use for sampling. | 1.1 |
last_n_tokens |
int |
The number of last tokens to use for repetition penalty. | 64 |
seed |
int |
The seed value to use for sampling tokens. | -1 |
max_new_tokens |
int |
The maximum number of new tokens to generate. | 256 |
stop |
List[str] |
A list of sequences to stop generation when encountered. | None |
stream |
bool |
Whether to stream the generated text. | False |
reset |
bool |
Whether to reset the model state before generating text. | True |
batch_size |
int |
The batch size to use for evaluating tokens in a single prompt. | 8 |
threads |
int |
The number of threads to use for evaluating tokens. | -1 |
context_length |
int |
The maximum context length to use. | -1 |
gpu_layers |
int |
The number of layers to run on GPU. | 0 |
Note: Currently only LLaMA, MPT and Falcon models support the
context_length
parameter.
AutoModelForCausalLM
AutoModelForCausalLM.from_pretrained
from_pretrained(
model_path_or_repo_id: str,
model_type: Optional[str] = None,
model_file: Optional[str] = None,
config: Optional[ctransformers.hub.AutoConfig] = None,
lib: Optional[str] = None,
local_files_only: bool = False,
revision: Optional[str] = None,
hf: bool = False,
**kwargs
) → LLM
Loads the language model from a local file or remote repo.
Args:
model_path_or_repo_id
: The path to a model file or directory or the name of a Hugging Face Hub model repo.model_type
: The model type.model_file
: The name of the model file in repo or directory.config
: AutoConfig
object.lib
: The path to a shared library or one of avx2
, avx
, basic
.local_files_only
: Whether or not to only look at local files (i.e., do not try to download the model).revision
: The specific model version to use. It can be a branch name, a tag name, or a commit id.hf
: Whether to create a Hugging Face Transformers model.Returns:
LLM
object.
LLM
LLM.__init__
__init__(
model_path: str,
model_type: Optional[str] = None,
config: Optional[ctransformers.llm.Config] = None,
lib: Optional[str] = None
)
Loads the language model from a local file.
Args:
model_path
: The path to a model file.model_type
: The model type.config
: Config
object.lib
: The path to a shared library or one of avx2
, avx
, basic
.The beginning-of-sequence token.
The config object.
The context length of model.
The input embeddings.
The end-of-sequence token.
The unnormalized log probabilities.
The path to the model file.
The model type.
The padding token.
The number of tokens in vocabulary.
LLM.detokenize
detokenize(tokens: Sequence[int], decode: bool = True) → Union[str, bytes]
Converts a list of tokens to text.
Args:
tokens
: The list of tokens.decode
: Whether to decode the text as UTF-8 string.Returns: The combined text of all tokens.
LLM.embed
embed(
input: Union[str, Sequence[int]],
batch_size: Optional[int] = None,
threads: Optional[int] = None
) → List[float]
Computes embeddings for a text or list of tokens.
Note: Currently only LLaMA and Falcon models support embeddings.
Args:
input
: The input text or list of tokens to get embeddings for.batch_size
: The batch size to use for evaluating tokens in a single prompt. Default: 8
threads
: The number of threads to use for evaluating tokens. Default: -1
Returns: The input embeddings.
LLM.eval
eval(
tokens: Sequence[int],
batch_size: Optional[int] = None,
threads: Optional[int] = None
) → None
Evaluates a list of tokens.
Args:
tokens
: The list of tokens to evaluate.batch_size
: The batch size to use for evaluating tokens in a single prompt. Default: 8
threads
: The number of threads to use for evaluating tokens. Default: -1
LLM.generate
generate(
tokens: Sequence[int],
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
reset: Optional[bool] = None
) → Generator[int, NoneType, NoneType]
Generates new tokens from a list of tokens.
Args:
tokens
: The list of tokens to generate tokens from.top_k
: The top-k value to use for sampling. Default: 40
top_p
: The top-p value to use for sampling. Default: 0.95
temperature
: The temperature to use for sampling. Default: 0.8
repetition_penalty
: The repetition penalty to use for sampling. Default: 1.1
last_n_tokens
: The number of last tokens to use for repetition penalty. Default: 64
seed
: The seed value to use for sampling tokens. Default: -1
batch_size
: The batch size to use for evaluating tokens in a single prompt. Default: 8
threads
: The number of threads to use for evaluating tokens. Default: -1
reset
: Whether to reset the model state before generating text. Default: True
Returns: The generated tokens.
LLM.is_eos_token
is_eos_token(token: int) → bool
Checks if a token is an end-of-sequence token.
Args:
token
: The token to check.Returns:
True
if the token is an end-of-sequence token else False
.
LLM.prepare_inputs_for_generation
prepare_inputs_for_generation(
tokens: Sequence[int],
reset: Optional[bool] = None
) → Sequence[int]
Removes input tokens that are evaluated in the past and updates the LLM context.
Args:
tokens
: The list of input tokens.reset
: Whether to reset the model state before generating text. Default: True
Returns: The list of tokens to evaluate.
LLM.reset
reset() → None
Deprecated since 0.2.27.
LLM.sample
sample(
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None
) → int
Samples a token from the model.
Args:
top_k
: The top-k value to use for sampling. Default: 40
top_p
: The top-p value to use for sampling. Default: 0.95
temperature
: The temperature to use for sampling. Default: 0.8
repetition_penalty
: The repetition penalty to use for sampling. Default: 1.1
last_n_tokens
: The number of last tokens to use for repetition penalty. Default: 64
seed
: The seed value to use for sampling tokens. Default: -1
Returns: The sampled token.
LLM.tokenize
tokenize(text: str, add_bos_token: Optional[bool] = None) → List[int]
Converts a text into list of tokens.
Args:
text
: The text to tokenize.add_bos_token
: Whether to add the beginning-of-sequence token.Returns: The list of tokens.
LLM.__call__
__call__(
prompt: str,
max_new_tokens: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
stop: Optional[Sequence[str]] = None,
stream: Optional[bool] = None,
reset: Optional[bool] = None
) → Union[str, Generator[str, NoneType, NoneType]]
Generates text from a prompt.
Args:
prompt
: The prompt to generate text from.max_new_tokens
: The maximum number of new tokens to generate. Default: 256
top_k
: The top-k value to use for sampling. Default: 40
top_p
: The top-p value to use for sampling. Default: 0.95
temperature
: The temperature to use for sampling. Default: 0.8
repetition_penalty
: The repetition penalty to use for sampling. Default: 1.1
last_n_tokens
: The number of last tokens to use for repetition penalty. Default: 64
seed
: The seed value to use for sampling tokens. Default: -1
batch_size
: The batch size to use for evaluating tokens in a single prompt. Default: 8
threads
: The number of threads to use for evaluating tokens. Default: -1
stop
: A list of sequences to stop generation when encountered. Default: None
stream
: Whether to stream the generated text. Default: False
reset
: Whether to reset the model state before generating text. Default: True
Returns: The generated text.