Project: formulae

Formulas for mixed-effects models in Python

Project Details

Latest version
0.5.1
Home Page
PyPI Page
https://pypi.org/project/formulae/

Project Popularity

PageRank
0.0027086749405377925
Number of downloads
44526

PyPI version codecov Code style: black

formulae

formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations like Patsy or formulaic is that formulae can work with formulas describing a model with both common and group specific effects (a.k.a. fixed and random effects, respectively).

This package has been written to make it easier to specify models with group effects in Bambi, a package that makes it easy to work with Bayesian GLMMs in Python, but it could be used independently as a backend for another library. The approach in this library is to extend classical statistical formulas in a similar way than in R package lme4.

Installation

formulae requires a working Python interpreter (3.7+) and the libraries numpy, scipy and pandas with versions specified in the requirements.txt file.

Assuming a standard Python environment is installed on your machine (including pip), the latest release of formulae can be installed in one line using pip:

pip install formulae

Alternatively, if you want the development version of the package you can install from GitHub:

pip install git+https://github.com/bambinos/formulae.git

Documentation

The official documentation can be found here

Notes

  • The data argument only accepts objects of class pandas.DataFrame.
  • y ~ . is not implemented and won't be implemented in a first version. However, it is planned to be included in the future.