Python Geocoding Toolbox
.. image:: https://img.shields.io/pypi/v/geopy.svg?style=flat-square :target: https://pypi.python.org/pypi/geopy/ :alt: Latest Version
.. image:: https://img.shields.io/github/actions/workflow/status/geopy/geopy/ci.yml?branch=master&style=flat-square :target: https://github.com/geopy/geopy/actions/workflows/ci.yml?query=branch%3Amaster :alt: Build Status
.. image:: https://img.shields.io/github/license/geopy/geopy.svg?style=flat-square :target: https://pypi.python.org/pypi/geopy/ :alt: License
geopy is a Python client for several popular geocoding web services.
geopy makes it easy for Python developers to locate the coordinates of addresses, cities, countries, and landmarks across the globe using third-party geocoders and other data sources.
geopy includes geocoder classes for the OpenStreetMap Nominatim
,
Google Geocoding API (V3)
, and many other geocoding services.
The full list is available on the Geocoders doc section
.
Geocoder classes are located in geopy.geocoders
.
.. _OpenStreetMap Nominatim: https://nominatim.org .. _Google Geocoding API (V3): https://developers.google.com/maps/documentation/geocoding/ .. _Geocoders doc section: https://geopy.readthedocs.io/en/latest/#geocoders .. _geopy.geocoders: https://github.com/geopy/geopy/tree/master/geopy/geocoders
geopy is tested against CPython (versions 3.7, 3.8, 3.9, 3.10, 3.11, 3.12) and PyPy3. geopy 1.x line also supported CPython 2.7, 3.4 and PyPy2.
© geopy contributors 2006-2018 (see AUTHORS) under the MIT License <https://github.com/geopy/geopy/blob/master/LICENSE>
__.
Install using pip <http://www.pip-installer.org/en/latest/>
__ with:
::
pip install geopy
Or, download a wheel or source archive from PyPI <https://pypi.python.org/pypi/geopy>
__.
To geolocate a query to an address and coordinates:
.. code:: pycon
>>> from geopy.geocoders import Nominatim
>>> geolocator = Nominatim(user_agent="specify_your_app_name_here")
>>> location = geolocator.geocode("175 5th Avenue NYC")
>>> print(location.address)
Flatiron Building, 175, 5th Avenue, Flatiron, New York, NYC, New York, ...
>>> print((location.latitude, location.longitude))
(40.7410861, -73.9896297241625)
>>> print(location.raw)
{'place_id': '9167009604', 'type': 'attraction', ...}
To find the address corresponding to a set of coordinates:
.. code:: pycon
>>> from geopy.geocoders import Nominatim
>>> geolocator = Nominatim(user_agent="specify_your_app_name_here")
>>> location = geolocator.reverse("52.509669, 13.376294")
>>> print(location.address)
Potsdamer Platz, Mitte, Berlin, 10117, Deutschland, European Union
>>> print((location.latitude, location.longitude))
(52.5094982, 13.3765983)
>>> print(location.raw)
{'place_id': '654513', 'osm_type': 'node', ...}
Geopy can calculate geodesic distance between two points using the
geodesic distance <https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid>
_ or the
great-circle distance <https://en.wikipedia.org/wiki/Great-circle_distance>
_,
with a default of the geodesic distance available as the function
geopy.distance.distance
.
Here's an example usage of the geodesic distance, taking pair
of :code:(lat, lon)
tuples:
.. code:: pycon
>>> from geopy.distance import geodesic
>>> newport_ri = (41.49008, -71.312796)
>>> cleveland_oh = (41.499498, -81.695391)
>>> print(geodesic(newport_ri, cleveland_oh).miles)
538.390445368
Using great-circle distance, also taking pair of :code:(lat, lon)
tuples:
.. code:: pycon
>>> from geopy.distance import great_circle
>>> newport_ri = (41.49008, -71.312796)
>>> cleveland_oh = (41.499498, -81.695391)
>>> print(great_circle(newport_ri, cleveland_oh).miles)
536.997990696
More documentation and examples can be found at
Read the Docs <http://geopy.readthedocs.io/en/latest/>
__.