Project: opencensus-ext-azure

OpenCensus Azure Monitor Exporter

Project Details

Latest version
1.1.12
Home Page
https://github.com/census-instrumentation/opencensus-python/tree/master/contrib/opencensus-ext-azure
PyPI Page
https://pypi.org/project/opencensus-ext-azure/

Project Popularity

PageRank
0.00655187932233864
Number of downloads
8868510

OpenCensus Azure Monitor Exporters

OpenCensus Azure Monitor exporters are on the path to deprecation. They will be officially unsupported by September 2024. Please migrate to the Azure Monitor OpenTelemetry Distro <https://learn.microsoft.com/azure/azure-monitor/app/opentelemetry-enable?tabs=python>_ for the recommended "one-stop-shop" solution or the Azure Monitor OpenTelemetry exporters <https://learn.microsoft.com/python/api/overview/azure/monitor-opentelemetry-exporter-readme?view=azure-python-preview>_ for the more hand-on, configurable solution based on OpenTelemetry <https://opentelemetry.io/>. Check out the migration guide <https://learn.microsoft.com/en-us/azure/azure-monitor/app/opentelemetry-python-opencensus-migrate?tabs=aspnetcore> on how to easily migrate Python code.

|pypi|

.. |pypi| image:: https://badge.fury.io/py/opencensus-ext-azure.svg :target: https://pypi.org/project/opencensus-ext-azure/

Installation

::

pip install opencensus-ext-azure

Prerequisites

  • Create an Azure Monitor resource and get the instrumentation key, more information can be found in the official docs <https://docs.microsoft.com/azure/azure-monitor/app/create-new-resource>_.
  • Place your instrumentation key in a connection string and directly into your code.
  • Alternatively, you can specify your connection string in an environment variable APPLICATIONINSIGHTS_CONNECTION_STRING.

Usage

Log


The **Azure Monitor Log Handler** allows you to export Python logs to `Azure Monitor`_.

This example shows how to send a warning level log to Azure Monitor.

.. code:: python

    import logging

    from opencensus.ext.azure.log_exporter import AzureLogHandler

    logger = logging.getLogger(__name__)
    logger.addHandler(AzureLogHandler(connection_string='InstrumentationKey=<your-instrumentation_key-here>'))
    logger.warning('Hello, World!')

Correlation
###########

You can enrich the logs with trace IDs and span IDs by using the `logging integration <../opencensus-ext-logging>`_.

* Install the `logging integration package <../opencensus-ext-logging>`_ using ``pip install opencensus-ext-logging``.

.. code:: python

    import logging

    from opencensus.ext.azure.log_exporter import AzureLogHandler
    from opencensus.ext.azure.trace_exporter import AzureExporter
    from opencensus.trace import config_integration
    from opencensus.trace.samplers import ProbabilitySampler
    from opencensus.trace.tracer import Tracer

    config_integration.trace_integrations(['logging'])

    logger = logging.getLogger(__name__)

    handler = AzureLogHandler(connection_string='InstrumentationKey=<your-instrumentation_key-here>')
    handler.setFormatter(logging.Formatter('%(traceId)s %(spanId)s %(message)s'))
    logger.addHandler(handler)

    tracer = Tracer(
        exporter=AzureExporter(connection_string='InstrumentationKey=<your-instrumentation_key-here>'),
        sampler=ProbabilitySampler(1.0)
    )

    logger.warning('Before the span')
    with tracer.span(name='test'):
        logger.warning('In the span')
    logger.warning('After the span')

Custom Properties
#################

You can also add custom properties to your log messages in the *extra* keyword argument using the custom_dimensions field.

WARNING: For this feature to work, you need to pass a dictionary to the custom_dimensions field. If you pass arguments of any other type, the logger will ignore them.

.. code:: python

    import logging

    from opencensus.ext.azure.log_exporter import AzureLogHandler

    logger = logging.getLogger(__name__)
    logger.addHandler(AzureLogHandler(connection_string='InstrumentationKey=<your-instrumentation_key-here>'))

    properties = {'custom_dimensions': {'key_1': 'value_1', 'key_2': 'value_2'}}
    logger.warning('action', extra=properties)

Modifying Logs
##############

* You can pass a callback function to the exporter to process telemetry before it is exported.
* Your callback function can return `False` if you do not want this envelope exported.
* Your callback function must accept an `envelope <https://github.com/census-instrumentation/opencensus-python/blob/master/contrib/opencensus-ext-azure/opencensus/ext/azure/common/protocol.py#L86>`_ data type as its parameter.
* You can see the schema for Azure Monitor data types in the envelopes `here <https://github.com/census-instrumentation/opencensus-python/blob/master/contrib/opencensus-ext-azure/opencensus/ext/azure/common/protocol.py>`_.
* The `AzureLogHandler` handles `ExceptionData` and `MessageData` data types.

.. code:: python

    import logging

    from opencensus.ext.azure.log_exporter import AzureLogHandler

    logger = logging.getLogger(__name__)

    # Callback function to append '_hello' to each log message telemetry
    def callback_function(envelope):
        envelope.data.baseData.message += '_hello'
        return True

    handler = AzureLogHandler(connection_string='InstrumentationKey=<your-instrumentation_key-here>')
    handler.add_telemetry_processor(callback_function)
    logger.addHandler(handler)
    logger.warning('Hello, World!')

Events
######

You can send `customEvent` telemetry in exactly the same way you would send `trace` telemetry except using the `AzureEventHandler` instead.

.. code:: python

    import logging

    from opencensus.ext.azure.log_exporter import AzureEventHandler

    logger = logging.getLogger(__name__)
    logger.addHandler(AzureEventHandler(connection_string='InstrumentationKey=<your-instrumentation_key-here>'))
    logger.setLevel(logging.INFO)
    logger.info('Hello, World!')

Metrics

The Azure Monitor Metrics Exporter allows you to export metrics to Azure Monitor_.

.. code:: python

from opencensus.ext.azure import metrics_exporter
from opencensus.stats import aggregation as aggregation_module
from opencensus.stats import measure as measure_module
from opencensus.stats import stats as stats_module
from opencensus.stats import view as view_module
from opencensus.tags import tag_map as tag_map_module

stats = stats_module.stats
view_manager = stats.view_manager
stats_recorder = stats.stats_recorder

CARROTS_MEASURE = measure_module.MeasureInt("carrots",
                                            "number of carrots",
                                            "carrots")
CARROTS_VIEW = view_module.View("carrots_view",
                                "number of carrots",
                                [],
                                CARROTS_MEASURE,
                                aggregation_module.CountAggregation())

def main():
    # Enable metrics
    # Set the interval in seconds to 60s, which is the time interval application insights
    # aggregates your metrics
    exporter = metrics_exporter.new_metrics_exporter(
        connection_string='InstrumentationKey=<your-instrumentation-key-here>'
    )
    view_manager.register_exporter(exporter)

    view_manager.register_view(CARROTS_VIEW)
    mmap = stats_recorder.new_measurement_map()
    tmap = tag_map_module.TagMap()

    mmap.measure_int_put(CARROTS_MEASURE, 1000)
    mmap.record(tmap)

    print("Done recording metrics")

if __name__ == "__main__":
    main()

Performance counters ####################

The exporter also includes a set of performance counters that are exported to Azure Monitor by default.

.. code:: python

import psutil
import time

from opencensus.ext.azure import metrics_exporter

def main():
    # Performance counters are sent by default. You can disable performance counters by
    # passing in enable_standard_metrics=False into the constructor of
    # new_metrics_exporter() 
    _exporter = metrics_exporter.new_metrics_exporter(
        connection_string='InstrumentationKey=<your-instrumentation-key-here>',
        export_interval=60,
    )

    for i in range(100):
        print(psutil.virtual_memory())
        time.sleep(5)

    print("Done recording metrics")

if __name__ == "__main__":
    main()

Below is a list of performance counters that are currently available:

  • Available Memory (bytes)
  • CPU Processor Time (percentage)
  • Incoming Request Rate (per second)
  • Incoming Request Average Execution Time (milliseconds)
  • Process CPU Usage (percentage)
  • Process Private Bytes (bytes)

Modifying Metrics #################

  • You can pass a callback function to the exporter to process telemetry before it is exported.
  • Your callback function can return False if you do not want this envelope exported.
  • Your callback function must accept an envelope <https://github.com/census-instrumentation/opencensus-python/blob/master/contrib/opencensus-ext-azure/opencensus/ext/azure/common/protocol.py#L86>_ data type as its parameter.
  • You can see the schema for Azure Monitor data types in the envelopes here <https://github.com/census-instrumentation/opencensus-python/blob/master/contrib/opencensus-ext-azure/opencensus/ext/azure/common/protocol.py>_.
  • The MetricsExporter handles MetricData data types.

.. code:: python

from opencensus.ext.azure import metrics_exporter
from opencensus.stats import aggregation as aggregation_module
from opencensus.stats import measure as measure_module
from opencensus.stats import stats as stats_module
from opencensus.stats import view as view_module
from opencensus.tags import tag_map as tag_map_module

stats = stats_module.stats
view_manager = stats.view_manager
stats_recorder = stats.stats_recorder

CARROTS_MEASURE = measure_module.MeasureInt("carrots",
                                            "number of carrots",
                                            "carrots")
CARROTS_VIEW = view_module.View("carrots_view",
                                "number of carrots",
                                [],
                                CARROTS_MEASURE,
                                aggregation_module.CountAggregation())

# Callback function to only export the metric if value is greater than 0
def callback_function(envelope):
    return envelope.data.baseData.metrics[0].value > 0

def main():
    # Enable metrics
    # Set the interval in seconds to 60s, which is the time interval application insights
    # aggregates your metrics
    exporter = metrics_exporter.new_metrics_exporter(
        connection_string='InstrumentationKey=<your-instrumentation-key-here>',
        export_interval=60,
    )
    exporter.add_telemetry_processor(callback_function)
    view_manager.register_exporter(exporter)

    view_manager.register_view(CARROTS_VIEW)
    mmap = stats_recorder.new_measurement_map()
    tmap = tag_map_module.TagMap()

    mmap.measure_int_put(CARROTS_MEASURE, 1000)
    mmap.record(tmap)

    print("Done recording metrics")

if __name__ == "__main__":
    main()

Trace


The **Azure Monitor Trace Exporter** allows you to export `OpenCensus`_ traces to `Azure Monitor`_.

This example shows how to send a span "hello" to Azure Monitor.

 .. code:: python

    from opencensus.ext.azure.trace_exporter import AzureExporter
    from opencensus.trace.samplers import ProbabilitySampler
    from opencensus.trace.tracer import Tracer

    tracer = Tracer(
        exporter=AzureExporter(
            connection_string='InstrumentationKey=<your-instrumentation-key-here>'
        ),
        sampler=ProbabilitySampler(1.0)
    )

    with tracer.span(name='hello'):
        print('Hello, World!')

Integrations
############

OpenCensus also supports several `integrations <https://github.com/census-instrumentation/opencensus-python#integration>`_ which allows OpenCensus to integrate with third party libraries.

This example shows how to integrate with the `requests <https://2.python-requests.org/en/master/>`_ library.

* Install the `requests integration package <../opencensus-ext-requests>`_ using ``pip install opencensus-ext-requests``.

.. code:: python

    import requests

    from opencensus.ext.azure.trace_exporter import AzureExporter
    from opencensus.trace import config_integration
    from opencensus.trace.samplers import ProbabilitySampler
    from opencensus.trace.tracer import Tracer

    config_integration.trace_integrations(['requests'])
    tracer = Tracer(
        exporter=AzureExporter(
            connection_string='InstrumentationKey=<your-instrumentation-key-here>',
        ),
        sampler=ProbabilitySampler(1.0),
    )
    with tracer.span(name='parent'):
        response = requests.get(url='https://www.wikipedia.org/wiki/Rabbit')

Modifying Traces
################

* You can pass a callback function to the exporter to process telemetry before it is exported.
* Your callback function can return `False` if you do not want this envelope exported.
* Your callback function must accept an `envelope <https://github.com/census-instrumentation/opencensus-python/blob/master/contrib/opencensus-ext-azure/opencensus/ext/azure/common/protocol.py#L86>`_ data type as its parameter.
* You can see the schema for Azure Monitor data types in the envelopes `here <https://github.com/census-instrumentation/opencensus-python/blob/master/contrib/opencensus-ext-azure/opencensus/ext/azure/common/protocol.py>`_.
* The `AzureExporter` handles `Data` data types.

.. code:: python

    import requests

    from opencensus.ext.azure.trace_exporter import AzureExporter
    from opencensus.trace import config_integration
    from opencensus.trace.samplers import ProbabilitySampler
    from opencensus.trace.tracer import Tracer

    config_integration.trace_integrations(['requests'])

    # Callback function to add os_type: linux to span properties
    def callback_function(envelope):
        envelope.data.baseData.properties['os_type'] = 'linux'
        return True

    exporter = AzureExporter(
        connection_string='InstrumentationKey=<your-instrumentation-key-here>'
    )
    exporter.add_telemetry_processor(callback_function)
    tracer = Tracer(exporter=exporter, sampler=ProbabilitySampler(1.0))
    with tracer.span(name='parent'):
        response = requests.get(url='https://www.wikipedia.org/wiki/Rabbit')

Integrate with Azure Functions
##############################

Users who want to capture custom telemetry in Azure Functions environments are encouraged to used the OpenCensus Python Azure Functions `extension <https://github.com/census-ecosystem/opencensus-python-extensions-azure/tree/main/extensions/functions#opencensus-python-azure-functions-extension>`_. More details can be found in this `document <https://docs.microsoft.com/azure/azure-functions/functions-reference-python?tabs=application-level#log-custom-telemetry>`_.

References
----------

* `Azure Monitor <https://docs.microsoft.com/azure/azure-monitor/>`_
* `Official Microsoft Docs <https://learn.microsoft.com/previous-versions/azure/azure-monitor/app/opencensus-python>`_
* `Examples <https://github.com/census-instrumentation/opencensus-python/tree/master/contrib/opencensus-ext-azure/examples>`_
* `OpenCensus Project <https://opencensus.io/>`_

.. _Azure Monitor: https://docs.microsoft.com/azure/azure-monitor/
.. _OpenCensus: https://github.com/census-instrumentation/opencensus-python/