JSON schema generation from dataclasses
.. image:: https://github.com/s-knibbs/dataclasses-jsonschema/workflows/Tox%20tests/badge.svg?branch=master :target: https://github.com/s-knibbs/dataclasses-jsonschema/actions
.. image:: https://badge.fury.io/py/dataclasses-jsonschema.svg :target: https://badge.fury.io/py/dataclasses-jsonschema
.. image:: https://img.shields.io/lgtm/grade/python/g/s-knibbs/dataclasses-jsonschema.svg?logo=lgtm&logoWidth=18 :target: https://lgtm.com/projects/g/s-knibbs/dataclasses-jsonschema/context:python :alt: Language grade: Python
Please Note: This project is in maintenance mode. I'm currently only making urgent bugfixes.
A library to generate JSON Schema from python 3.7 dataclasses. Python 3.6 is supported through the dataclasses backport <https://github.com/ericvsmith/dataclasses>
. Aims to be a more lightweight alternative to similar projects such as marshmallow <https://github.com/marshmallow-code/marshmallow>
& pydantic <https://github.com/samuelcolvin/pydantic>
_.
APISpec <https://github.com/marshmallow-code/apispec>
_ support. Example below_:.. code:: bash
~$ pip install dataclasses-jsonschema
For improved validation performance using fastjsonschema <https://github.com/horejsek/python-fastjsonschema>
_, install with:
.. code:: bash
~$ pip install dataclasses-jsonschema[fast-validation]
For improved uuid performance using fastuuid <https://pypi.org/project/fastuuid/>
_, install with:
.. code:: bash
~$ pip install dataclasses-jsonschema[fast-uuid]
For improved date and datetime parsing performance using ciso8601 <https://pypi.org/project/ciso8601/>
_, install with:
.. code:: bash
~$ pip install dataclasses-jsonschema[fast-dateparsing]
Beware ciso8601
doesn’t support the entirety of the ISO 8601 spec, only a popular subset.
.. code:: python
from dataclasses import dataclass
from dataclasses_jsonschema import JsonSchemaMixin
@dataclass
class Point(JsonSchemaMixin):
"A 2D point"
x: float
y: float
Schema Generation ^^^^^^^^^^^^^^^^^
.. code:: python
>>> pprint(Point.json_schema())
{
'description': 'A 2D point',
'type': 'object',
'properties': {
'x': {'format': 'float', 'type': 'number'},
'y': {'format': 'float', 'type': 'number'}
},
'required': ['x', 'y']
}
Data Serialisation ^^^^^^^^^^^^^^^^^^ .. code:: python
>>> Point(x=3.5, y=10.1).to_dict()
{'x': 3.5, 'y': 10.1}
Deserialisation ^^^^^^^^^^^^^^^
.. code:: python
>>> Point.from_dict({'x': 3.14, 'y': 1.5})
Point(x=3.14, y=1.5)
>>> Point.from_dict({'x': 3.14, y: 'wrong'})
dataclasses_jsonschema.ValidationError: 'wrong' is not of type 'number'
Generating multiple schemas ^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code:: python
from dataclasses_jsonschema import JsonSchemaMixin, SchemaType
@dataclass
class Address(JsonSchemaMixin):
"""Postal Address"""
building: str
street: str
city: str
@dataclass
class Company(JsonSchemaMixin):
"""Company Details"""
name: str
address: Address
>>> pprint(JsonSchemaMixin.all_json_schemas(schema_type=SchemaType.SWAGGER_V3))
{'Address': {'description': 'Postal Address',
'properties': {'building': {'type': 'string'},
'city': {'type': 'string'},
'street': {'type': 'string'}},
'required': ['building', 'street', 'city'],
'type': 'object'},
'Company': {'description': 'Company Details',
'properties': {'address': {'$ref': '#/components/schemas/Address'},
'name': {'type': 'string'}},
'required': ['name', 'address'],
'type': 'object'}}
Custom validation using NewType <https://docs.python.org/3/library/typing.html#newtype>
_
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code:: python
from dataclasses_jsonschema import JsonSchemaMixin, FieldEncoder
PhoneNumber = NewType('PhoneNumber', str)
class PhoneNumberField(FieldEncoder):
@property
def json_schema(self):
return {'type': 'string', 'pattern': r'^(\([0-9]{3}\))?[0-9]{3}-[0-9]{4}$'}
JsonSchemaMixin.register_field_encoders({PhoneNumber: PhoneNumberField()})
@dataclass
class Person(JsonSchemaMixin):
name: str
phone_number: PhoneNumber
For more examples see the tests <https://github.com/s-knibbs/dataclasses-jsonschema/blob/master/tests/conftest.py>
_
.. _below:
New in v2.5.0
OpenAPI & Swagger specs can be generated using the apispec plugin:
.. code:: python
from typing import Optional, List
from dataclasses import dataclass
from apispec import APISpec
from apispec_webframeworks.flask import FlaskPlugin
from flask import Flask, jsonify
import pytest
from dataclasses_jsonschema.apispec import DataclassesPlugin
from dataclasses_jsonschema import JsonSchemaMixin
# Create an APISpec
spec = APISpec(
title="Swagger Petstore",
version="1.0.0",
openapi_version="3.0.2",
plugins=[FlaskPlugin(), DataclassesPlugin()],
)
@dataclass
class Category(JsonSchemaMixin):
"""Pet category"""
name: str
id: Optional[int]
@dataclass
class Pet(JsonSchemaMixin):
"""A pet"""
categories: List[Category]
name: str
app = Flask(__name__)
@app.route("/random")
def random_pet():
"""A cute furry animal endpoint.
---
get:
description: Get a random pet
responses:
200:
content:
application/json:
schema: Pet
"""
pet = get_random_pet()
return jsonify(pet.to_dict())
# Dependant schemas (e.g. 'Category') are added automatically
spec.components.schema("Pet", schema=Pet)
with app.test_request_context():
spec.path(view=random_pet)
pydantic <https://github.com/samuelcolvin/pydantic>
_ and marshmallow <https://github.com/marshmallow-code/marshmallow>
_