Python library for extract property from data.
.. contents:: DataProperty :backlinks: top :local:
A Python library for extract property from data.
.. image:: https://badge.fury.io/py/DataProperty.svg :target: https://badge.fury.io/py/DataProperty :alt: PyPI package version
.. image:: https://anaconda.org/conda-forge/DataProperty/badges/version.svg :target: https://anaconda.org/conda-forge/DataProperty :alt: conda-forge package version
.. image:: https://img.shields.io/pypi/pyversions/DataProperty.svg :target: https://pypi.org/project/DataProperty :alt: Supported Python versions
.. image:: https://img.shields.io/pypi/implementation/DataProperty.svg :target: https://pypi.org/project/DataProperty :alt: Supported Python implementations
.. image:: https://github.com/thombashi/DataProperty/actions/workflows/ci.yml/badge.svg :target: https://github.com/thombashi/DataProperty/actions/workflows/ci.yml :alt: CI status of Linux/macOS/Windows
.. image:: https://coveralls.io/repos/github/thombashi/DataProperty/badge.svg?branch=master :target: https://coveralls.io/github/thombashi/DataProperty?branch=master :alt: Test coverage
.. image:: https://github.com/thombashi/DataProperty/actions/workflows/github-code-scanning/codeql/badge.svg :target: https://github.com/thombashi/DataProperty/actions/workflows/github-code-scanning/codeql :alt: CodeQL
::
pip install DataProperty
::
conda install -c conda-forge dataproperty
::
sudo add-apt-repository ppa:thombashi/ppa
sudo apt update
sudo apt install python3-dataproperty
e.g. Extract a float
value property
.. code:: python
>>> from dataproperty import DataProperty
>>> DataProperty(-1.1)
data=-1.1, type=REAL_NUMBER, align=right, ascii_width=4, int_digits=1, decimal_places=1, extra_len=1
e.g. Extract a ``int`` value property
.. code:: python
>>> from dataproperty import DataProperty
>>> DataProperty(123456789)
data=123456789, type=INTEGER, align=right, ascii_width=9, int_digits=9, decimal_places=0, extra_len=0
e.g. Extract a str
(ascii) value property
.. code:: python
>>> from dataproperty import DataProperty
>>> DataProperty("sample string")
data=sample string, type=STRING, align=left, length=13, ascii_width=13, extra_len=0
e.g. Extract a ``str`` (multi-byte) value property
.. code:: python
>>> from dataproperty import DataProperty
>>> str(DataProperty("吾輩は猫である"))
data=吾輩は猫である, type=STRING, align=left, length=7, ascii_width=14, extra_len=0
e.g. Extract a time (datetime
) value property
.. code:: python
>>> import datetime
>>> from dataproperty import DataProperty
>>> DataProperty(datetime.datetime(2017, 1, 1, 0, 0, 0))
data=2017-01-01 00:00:00, type=DATETIME, align=left, ascii_width=19, extra_len=0
e.g. Extract a ``bool`` value property
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python
>>> from dataproperty import DataProperty
>>> DataProperty(True)
data=True, type=BOOL, align=left, ascii_width=4, extra_len=0
Extract data property for each element from a matrix
----------------------------------------------------
``DataPropertyExtractor.to_dp_matrix`` method returns a matrix of ``DataProperty`` instances from a data matrix.
An example data set and the result are as follows:
:Sample Code:
.. code:: python
import datetime
from dataproperty import DataPropertyExtractor
dp_extractor = DataPropertyExtractor()
dt = datetime.datetime(2017, 1, 1, 0, 0, 0)
inf = float("inf")
nan = float("nan")
dp_matrix = dp_extractor.to_dp_matrix([
[1, 1.1, "aa", 1, 1, True, inf, nan, dt],
[2, 2.2, "bbb", 2.2, 2.2, False, "inf", "nan", dt],
[3, 3.33, "cccc", -3, "ccc", "true", inf, "NAN", "2017-01-01T01:23:45+0900"],
])
for row, dp_list in enumerate(dp_matrix):
for col, dp in enumerate(dp_list):
print("row={:d}, col={:d}, {}".format(row, col, str(dp)))
:Output:
::
row=0, col=0, data=1, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
row=0, col=1, data=1.1, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
row=0, col=2, data=aa, type=STRING, align=left, ascii_width=2, length=2, extra_len=0
row=0, col=3, data=1, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
row=0, col=4, data=1, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
row=0, col=5, data=True, type=BOOL, align=left, ascii_width=4, extra_len=0
row=0, col=6, data=Infinity, type=INFINITY, align=left, ascii_width=8, extra_len=0
row=0, col=7, data=NaN, type=NAN, align=left, ascii_width=3, extra_len=0
row=0, col=8, data=2017-01-01 00:00:00, type=DATETIME, align=left, ascii_width=19, extra_len=0
row=1, col=0, data=2, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
row=1, col=1, data=2.2, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
row=1, col=2, data=bbb, type=STRING, align=left, ascii_width=3, length=3, extra_len=0
row=1, col=3, data=2.2, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
row=1, col=4, data=2.2, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
row=1, col=5, data=False, type=BOOL, align=left, ascii_width=5, extra_len=0
row=1, col=6, data=Infinity, type=INFINITY, align=left, ascii_width=8, extra_len=0
row=1, col=7, data=NaN, type=NAN, align=left, ascii_width=3, extra_len=0
row=1, col=8, data=2017-01-01 00:00:00, type=DATETIME, align=left, ascii_width=19, extra_len=0
row=2, col=0, data=3, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
row=2, col=1, data=3.33, type=REAL_NUMBER, align=right, ascii_width=4, int_digits=1, decimal_places=2, extra_len=0
row=2, col=2, data=cccc, type=STRING, align=left, ascii_width=4, length=4, extra_len=0
row=2, col=3, data=-3, type=INTEGER, align=right, ascii_width=2, int_digits=1, decimal_places=0, extra_len=1
row=2, col=4, data=ccc, type=STRING, align=left, ascii_width=3, length=3, extra_len=0
row=2, col=5, data=True, type=BOOL, align=left, ascii_width=4, extra_len=0
row=2, col=6, data=Infinity, type=INFINITY, align=left, ascii_width=8, extra_len=0
row=2, col=7, data=NaN, type=NAN, align=left, ascii_width=3, extra_len=0
row=2, col=8, data=2017-01-01T01:23:45+0900, type=STRING, align=left, ascii_width=24, length=24, extra_len=0
Full example source code can be found at *examples/py/to_dp_matrix.py*
Extract properties for each column from a matrix
------------------------------------------------------
``DataPropertyExtractor.to_column_dp_list`` method returns a list of ``DataProperty`` instances from a data matrix. The list represents the properties for each column.
An example data set and the result are as follows:
Example data set and result are as follows:
:Sample Code:
.. code:: python
import datetime
from dataproperty import DataPropertyExtractor
dp_extractor = DataPropertyExtractor()
dt = datetime.datetime(2017, 1, 1, 0, 0, 0)
inf = float("inf")
nan = float("nan")
data_matrix = [
[1, 1.1, "aa", 1, 1, True, inf, nan, dt],
[2, 2.2, "bbb", 2.2, 2.2, False, "inf", "nan", dt],
[3, 3.33, "cccc", -3, "ccc", "true", inf, "NAN", "2017-01-01T01:23:45+0900"],
]
dp_extractor.headers = ["int", "float", "str", "num", "mix", "bool", "inf", "nan", "time"]
col_dp_list = dp_extractor.to_column_dp_list(dp_extractor.to_dp_matrix(dp_matrix))
for col_idx, col_dp in enumerate(col_dp_list):
print(str(col_dp))
:Output:
::
column=0, type=INTEGER, align=right, ascii_width=3, bit_len=2, int_digits=1, decimal_places=0
column=1, type=REAL_NUMBER, align=right, ascii_width=5, int_digits=1, decimal_places=(min=1, max=2)
column=2, type=STRING, align=left, ascii_width=4
column=3, type=REAL_NUMBER, align=right, ascii_width=4, int_digits=1, decimal_places=(min=0, max=1), extra_len=(min=0, max=1)
column=4, type=STRING, align=left, ascii_width=3, int_digits=1, decimal_places=(min=0, max=1)
column=5, type=BOOL, align=left, ascii_width=5
column=6, type=INFINITY, align=left, ascii_width=8
column=7, type=NAN, align=left, ascii_width=3
column=8, type=STRING, align=left, ascii_width=24
Full example source code can be found at *examples/py/to_column_dp_list.py*
Dependencies
============
- Python 3.7+
- `Python package dependencies (automatically installed) <https://github.com/thombashi/DataProperty/network/dependencies>`__
Optional dependencies
---------------------
- `loguru <https://github.com/Delgan/loguru>`__
- Used for logging if the package installed