Python module to run and analyze benchmarks
pyperf
.. image:: https://img.shields.io/pypi/v/pyperf.svg :alt: Latest release on the Python Cheeseshop (PyPI) :target: https://pypi.python.org/pypi/pyperf
.. image:: https://github.com/psf/pyperf/actions/workflows/build.yml/badge.svg :alt: Build status of pyperf on GitHub Actions :target: https://github.com/psf/pyperf/actions
The Python pyperf
module is a toolkit to write, run and analyze benchmarks.
To run a benchmark
_ use the pyperf timeit
command (result written into
bench.json
)::
$ python3 -m pyperf timeit '[1,2]*1000' -o bench.json
.....................
Mean +- std dev: 4.22 us +- 0.08 us
Or write a benchmark script bench.py
:
.. code:: python
#!/usr/bin/env python3
import pyperf
runner = pyperf.Runner()
runner.timeit(name="sort a sorted list",
stmt="sorted(s, key=f)",
setup="f = lambda x: x; s = list(range(1000))")
See the API docs
_ for full details on the timeit
function and the
Runner
class. To run the script and dump the results into a file named
bench.json
::
$ python3 bench.py -o bench.json
To analyze benchmark results
_ use the pyperf stats
command::
$ python3 -m pyperf stats telco.json
Total duration: 29.2 sec
Start date: 2016-10-21 03:14:19
End date: 2016-10-21 03:14:53
Raw value minimum: 177 ms
Raw value maximum: 183 ms
Number of calibration run: 1
Number of run with values: 40
Total number of run: 41
Number of warmup per run: 1
Number of value per run: 3
Loop iterations per value: 8
Total number of values: 120
Minimum: 22.1 ms
Median +- MAD: 22.5 ms +- 0.1 ms
Mean +- std dev: 22.5 ms +- 0.2 ms
Maximum: 22.9 ms
0th percentile: 22.1 ms (-2% of the mean) -- minimum
5th percentile: 22.3 ms (-1% of the mean)
25th percentile: 22.4 ms (-1% of the mean) -- Q1
50th percentile: 22.5 ms (-0% of the mean) -- median
75th percentile: 22.7 ms (+1% of the mean) -- Q3
95th percentile: 22.9 ms (+2% of the mean)
100th percentile: 22.9 ms (+2% of the mean) -- maximum
Number of outlier (out of 22.0 ms..23.0 ms): 0
There's also:
pyperf compare_to
command tests if a difference is
significant. It supports comparison between multiple benchmark suites (made
of multiple benchmarks)
::
$ python3 -m pyperf compare_to --table mult_list_py36.json mult_list_py37.json mult_list_py38.json +----------------+----------------+-----------------------+-----------------------+ | Benchmark | mult_list_py36 | mult_list_py37 | mult_list_py38 | +================+================+=======================+=======================+ | [1]*1000 | 2.13 us | 2.09 us: 1.02x faster | not significant | +----------------+----------------+-----------------------+-----------------------+ | [1,2]*1000 | 3.70 us | 5.28 us: 1.42x slower | 3.18 us: 1.16x faster | +----------------+----------------+-----------------------+-----------------------+ | [1,2,3]*1000 | 4.61 us | 6.05 us: 1.31x slower | 4.17 us: 1.11x faster | +----------------+----------------+-----------------------+-----------------------+ | Geometric mean | (ref) | 1.22x slower | 1.09x faster | +----------------+----------------+-----------------------+-----------------------+
pyperf system tune
command to tune your system to run stable benchmarks.
Automatically collect metadata on the computer and the benchmark:
use the pyperf metadata
command to display them, or the
pyperf collect_metadata
command to manually collect them.
--track-memory
and --tracemalloc
options to track
the memory usage of a benchmark.
pyperf documentation <https://pyperf.readthedocs.io/>
_pyperf project homepage at GitHub <https://github.com/psf/pyperf>
_ (code, bugs)Download latest pyperf release at the Python Cheeseshop (PyPI) <https://pypi.python.org/pypi/pyperf>
_Command to install pyperf on Python 3::
python3 -m pip install pyperf
pyperf requires Python 3.7 or newer.
Python 2.7 users can use pyperf 1.7.1 which is the last version compatible with Python 2.7.
pyperf is distributed under the MIT license.
The pyperf project is covered by the PSF Code of Conduct <https://www.python.org/psf/codeofconduct/>
_.
.. _run a benchmark: https://pyperf.readthedocs.io/en/latest/run_benchmark.html .. _the API docs: http://pyperf.readthedocs.io/en/latest/api.html#Runner.timeit .. _analyze benchmark results: https://pyperf.readthedocs.io/en/latest/analyze.html